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The theory of propagation of waves in a poroelastic solid
saturated by a single-phase fluid was presented by M. Biot.

The generalization to the case of multiphase saturating
fluids requires taking into account capillary pressures and
relative permeability functions.

To obtain the constitutive relations we apply the principle
of virtual complementary work, where capillary forces are
included as restrictions using Lagrange multipliers.

To determine the elastic constants in the constitutive
relations in terms of the properties of all phases, we apply a
set of "gedanken” experiments.



Multiphase Darcy law including relative permeabilities are
used in the definition of the dissipation functions, leading to
the Lagrangian formulation of the equations of motion.

Wave induced fluid flow and slow waves are a major cause of
attenuation and velocity dispersion of seismic waves in Biot
media, which occur at the mesoscopic scale, on the order of
centimeters, but their effect can be observed at the macro-
scale



We generalize Biot's theory to the case of multiphase
fluids including capillary pressure and relative
permeability functions.

For two-phase fluids, a plane wave analysis shows the
existence of three compressional waves (P1, P2, P3) and
one shear (S) wave.

For three-phase fluids, an additional compressional P4
wave exists.

While the P1, P2 and S waves behave similar to those in
the classical Biot theory, the P3 and P4 compressional
waves are additional slow waves whose behavior is ruled
by the motion of the non-wetting phases.
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Constitutive relations: Two-phase fluids

(2 : poroelastic isotropic medium saturated by a two-phase fluid

‘cij:ZGeij+5,;j(/1€|7-u3+81V-u”W+le7-uW

F'"W =—-B,V-u>— MV -u" — M3V -u"
FW —_ _82V'uS_M3V'unW_M2V'uW

Tij : total stress tensor Eij (US) - strain tensor
u’, U? :solid and 0 -fluid displacements averaged over the bulk material
U0=¢(U9—us) , ¢ :porosity 0=w, nw

2
G :shear modulus of the dry matrix A, =K, — : G , K, :undrained bulk modulus
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Constitutive relations: Two-phase fluids

F™  FY :generalized fluid forces
sz(sw'l'()pw_{pnw ’ <=ﬁW/PC,(SnW)
F"W= (Spw+ B+ pow— B+ pw, L = Pc (Spw)/Pc’ (Spw)

S 5 : 0 -fluid saturation, S, + S, =1 Py : 0 -fluid pressure

PC(SnW) = P,w — Py : capillary pressure f)w . reference wetting fluid pressure

The elastic constants M,, M,, M3, B; B, are determined
applying a set of “gedanken experiments’, generalizing
those of the single fluid phase of Biot
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= Constitutive relations: Three-phase fluids

() : poroelastic isotropic homogeneous medium saturated by
oil (o), water (w) and gas (g)

Tij=2GEij'l‘é‘ij(/lCV'us+81V'HO+BZ V-uW+B3V-u9)
FO=—B; V-u$s—M{V-u’+ My V-u”+Ms V-uf

FW:—32V'U,S— M4V'UO+M2 V-uW+M6V-u9
Fg=—83V-uS—M5 V-u0+M6V-uW+M3V-u9

So 1 Sy » Sy ¢ 0il, water and gas saturations, S, + S, + S, =1

PCOW(SO) S Loty £

Po » Py » Py : 0il, water and gas pressures
PCQO (Sg) — Pg — Po
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~—  Constitutive relations: Three-phase fluids

F°, FY, F9 : generalized fluid forces

Fo=(So+B, +8% o — (B +B )p,

F¥ = (Sw+ 8" )p,, + (ﬁ;}o - Bsz) P, ~ ByoPy

F = (59 1 5 +ﬁ;0)pg - (ﬁgﬂ B0 ¥ ﬁ;‘))po

= PC?W(SO) ﬁw o ;pw ﬁgo = rﬁw
Y Pcow(so) A PCOW(SO) PCgo (Sg)
% cho(sg) ﬁow i PCOW(SO)
go PC;}O(SQ) 7 Pcrgo(sg)

The elastic constants M, B; are determined applying
a set of “gedanken experiments”.



— Equations of motion: three-phase fluid

Assuming constant coefficients and absence of external sources :

Pii’ + p,Spil® + py, Sy 1Y + pgSyitd = V- 1(id)
PoSoU’+Goii° + gow WY + gog U9 + bott® + by, " + bygu9 = —VF, (u)
PwSwii® + gow i° + gy U + gyg 9 + by, u° + by u" + by ,u9 = —VE, (u)

PgSgli’ + gogU° + gug U + g4 U9 + byt + by, u” + byud = —VF, (u)

Mass and viscous coupling coefficients:

N =

1
l 2 2 2 2 \72
Sg peT i 3 S N S5 Sk Sg \3 (msne)
=—— Yst = E€\Yo Iw 9 by = by = ¢
o 0 ( s) &k ke

p,: density T: tortuosity 77y :Viscosity  k, k,,: absolute and relative permeabilities



— Equations of motion: three phase fluid

In compact form:

P(iif, i, it} ug) + D(uf,uf, w) ug)

(2T 9F° 9FY aF9\" .
B axj’axi’axi’axi ’ - ’3

P :mass coupling 12x12 symmetric positive definite matrix, defined
in terms of the mass coefficients of the individual phases

D :viscous coupling 12x12 symmetric non-negative matrix, defined
in terms of the viscosity of the individual fluid phases, the absolute
permeability and the three phase relative permeabilities.
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~—  Plane Wave Analysis: compressional waves

The divergence operator is applied to the equations of motion. Besidesa plane

compressional wave of angular frequency w and wave number [ = [,. + i [
travelling in the x -direction is considered:
6 —_vv.,,0 — i (lx1—wt) 0 =
e’ =V-u’ = (ye , =5,0,W, g
Replacing in the motion equations and using the expression of the generalized forces:

—w?pe’ — w?p,S,e° — w?p,S,e¥ —wp,S,e’
= (A, + 2G) V?e’ + B,V?e® + B,V?e” + B3V?e9

—w?p,S,e° — wg,e’ — w?Goy ¥ — w? g,y €9 + iwb,e® + iwb,,, e” + iwb, eI
= B;V?e® + M;V?e° + M,V?e” + MsV?ed
—w?py,Sye’ —w’go, e — wg, e¥ — w’ gy, e9 + iwb,, e’ + iwb,e" + iwb,, eI

= B,V?eS + M,V?e® + M,Ve" + M;V?e9

—w?pySse’ — w goge° — w2y, €Y —wg, e9 +iwb,ze° + iwb, e” +iwb,e?
= B;V?eS + MsV%e® + My V%e” + M;V2?ed
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~—  Plane Wave Analysis: compressional waves

Setting y = % the following eigenvalue problem is obtained:

y2AC' = E C!

poSO pWSW pgSg

Todetermine (=1 +il, wesolve det(A™1E—vy?I)=0

The four physical meaningful solutions determine the phase velocities Vp; and
attenuation coefficients @pj of the P1, P2, P3 and P4 compressional waves

l..
v, = a, =27.8.655588 | ”.l j=1,2,3,4
|l7‘]| |lr]|
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We analyze the behavior of all slow waves as functions of saturation and
frequency for different p,, in a sample of Berea Sandstone.

b =0.3; k=1.0D; p,=2.65 gr/icm3, K,= 37 GPa

Relative permeability functions

o(5,)-(

S

_Sra
1_ Srﬂ

2
) 5 s 15 S

rq’

FLUID | ort | water I GAS T
PROPERTIES pw=10 MPa | pw=30 MPa | pw=50 MPa
o(kg/m3) |07 1 86.52 185.84 218.29
N (Pa.s) 0.1 0.01 1.17 107 1.39 107 1.59 10™
K (GPa) 0.57 2.25 8.93 103 4.08 107 7.98 102
_ _ K (GPa) 12.79 15.57 15.62
Matrix Properties |5 (Gpg) 11.81 13.61 13.70
Capillary pressure functions
PCOW(SO): A\)W (]/(So +Srw ) Sro/[S (1 S _S )]2) S:l'_Srw_Srg
PCgO(Sg ): Ago (]/(Sg +S, _1)2 _Srg/[ g( % )]2) <1-5,, _Srg

Pp=60,q+#60,p+q
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Gas Saturation

P2 wave velocities display a decreasing
behavior at low gas saturation and
stabilize at higher saturations.
Velocity increases for increasing values

of water pressure.

Gas Saturation

P2 wave phase velocities have a
general decreasing behavior as gas
saturation increases.

Velocity increases for increasing
values of water pressure.
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Gas Saturation

P3 wave velocities show a general
decreasing behavior as gas saturation
increases, except in high saturations,
where they start to increase.
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Gas Saturation

P3 wave velocities show a general
decreasing behavior as gas saturation
increases, except in low saturations,
where they increase.
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P2 wave velocities are almost zero at low frequencies, behaving as diffusion-type
waves, while they stabilize at high frequencies. Furthermore, they increase as the
water reference pressure increases.
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P3 wave velocities are almost zero at low frequencies, behaving as diffusion-type
waves, while they stabilize at high frequencies. Furthermore, they increase as the
water reference pressure increases.
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Gas Saturation

P4 wave velocities are almost
independent of gas saturation with
their values increasing as water
pressure increases.
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P4 P-wave as function of
frequency behaves similarly as P2
and P3 P-waves. Furthermore,
velocities increase as water
reference pressure increases
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Comparison between the classic Biot theory
and the three-phase model
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The classic P2 P-wave phase velocity (left) and attenuation (rigth) have
intermediate values among the slow waves of the three-phase model
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This work presents an analysis of the behavior of slow
waves in a poroelastic solid saturated by multiphase fluids.

At1 MHz, slow P2 and P3 P-waves phase velocities
increase as function of depth and show a general
decreasing behavior as function of the non-wetting
saturation.

Slow P2 and P3 P-waves are diffusion type waves at low
frequencies and stabilize at the ultrasonic range; they
exhibit higher values with increasing pressure.

At 1 MHz, slow P4 waves are almost independent of gas
saturation and, as function of frequency, behave as the
slow P2 and P3 waves



A comparison among velocity and attenuation of the
classic P2 Biot wave and the slow waves of the three-
phase model shows that all of them have a similar
behavior, and, for the chosen saturation values, the classic
P2 wave takes intermediate velocity and attenuation
values among those of the three-phase model






